
Hybrid Convolution and Deep Learning with

Structured Covariates

Genglin Liu, Ina Fiterau

May 2021

Abstract

Deep neural networks has been widely used in computer vision tasks in recent years,

due to their strong approximation capability and more specifically, the feature extrac-

tion capability of convolutional neural networks. Deep learning models are proven

to be very strong in extracting features from unstructured data such as images,

text, or temporal signals. However, at times there is also a rich amount of struc-

tured information such as demographic information of patient records along with

medical images, which oftentimes contribute to the tasks of interest as well. Most

current deep learning models do not jointly optimize over the images along with any

structured covariates even if they are available. We propose a hybrid deep learn-

ing mechanism that takes available structured information into account during the

feature extraction process, and consequently boosts the accuracy for certain classi-

fication tasks. Compared against our baseline models, hybrid counterparts perform

2%-3% better on the CelebA facial attribute dataset, and we hope to extend this

technique to medical neuroimaging analysis and aid tasks such as early Alzheimer’s

detection.

1



1 Introduction

The main problem we’re investigating in this thesis is the binary estimation of a

facial attribute in the CelebA dataset using deep learning. We explore whether the

hybrid convolution that involves structured covariates could yield in better perfor-

mance than a neural network with regular convolutional layers. Although most of

our work so far is done with human face images, we suggest that this mechanism

will have more useful impact on tasks concerning health and medical data such as

medical scans with patient records or domain-specific medical exam evaluations. The

rest of this paper will present our effort of building the hybrid convolutional layer,

modifying our baseline architecture and fusing multiple covariates into our feature

extraction, and tuning the relevant hyperparameters to refine the performance of the

novel network. Section 1.1 through 1.3 will give more in-depth introduction of the

relevant model, dataset and significance of this work. Section 2 presents some related

work done in early information fusion as well as facial attribute estimation. Section

3 discusses the methods, core algorithm for the hybrid convolution implementation

and experimental designs. Section 4 presents the results and observations from the

experiments introduced in Section 3. Section 5 concludes this project and has an

additional discussion regarding the future directions.

1.1 VGG

we selected the VGG Net as the baseline model for my experiments. There were a

few other popular options to choose from, such as Residual network (ResNet) [1] or

an older network such as AlexNet [2], but VGG turned out to be the ideal candidate.

The reason why we selected the VGG-16 network as our baseline model of interest

is that out of a few available options the VGG net seemed most fitting. AlexNet,

along with many other older and simpler architectures, are not powerful enough to

reach the level of performance that VGG does on image recognition tasks. After we

experimented with a pretrained ResNet-18 model we noticed that the training took

longer and could not reach the same accuracy as the vgg counterpart. Additionally

compared with another more recent and advanced architecture such as Inception

2



Net, VGG has a relatively more straightforward structure and composition, as well

as greater similarity to the image feature extractor that our lab has been adopting

for brain MRI scans.

The VGG neural network architecture used in our experiments is the VGG-16

architecture [3]. This architecture consists of total 16 layers which is divided into a

‘feature extractor’ container of 13 convolutional layers, 2 hidden fully connected layer,

and 1 fully connected output layer. Every convolutional layer and the fully connected

hidden layer is followed by Rectified Linear Unit (ReLU) nonlinear function. The

output layer has 2 output neurons followed by a Softmax layer to produce probability

outputs.

1.2 CelebA dataset

We experiment our hybrid convolutional layers on a toy dataset before we move on

to the ADNI data and apply it to the MRI image feature extractors.

We use the CelebFaces Attributes (CelebA) dataset which contains 202,599 face

images of 10,177 identities (celebrities) collected from the internet and annotated

with 40 facial attributes [4]. The dataset is split into 162,770 instances for training

and 19,962 instances for testing. For our purposes we test on the validation set which

contains 19,867 instances, each time after we train our models on the entire training

set.

The toy problem we are solving in this section is to predict a binary facial attribute

in the CelebA dataset using a deep convolutional network VGG Net. Later we will

investigate whether the shortfused hybrid convolutional layers improve performance

on the same classification task.

1.3 Significance and Relevance to Neuroimaging and Alzheimer’s

Detection

Our research interest does not stop at learning to estimate human facial attributes.

There are many familiar scenarios in medical or health data sets where different

3



modalities of data are present. Oftentimes we are able to obtain unstructured data

such as medical images, as well as structured information such as demographic

records and medical exam scores. These types of data thus gives a rich context

for deep learning with structured covariates. In this subsection, we have a short

discussion on how this hybrid deep learning mechanism can be extended to help us

detect and forecast Alzheimer’s disease (AD).

Alzheimer’s disease is a degenerative condition that causes major changes in the

brain, leading to cognitive decline and death in a matter of a few years. There is no

known effective cure for the Alzheimer’s. Many treatments have been tried, immense

effort has been expended into clinical trials and nothing has worked so far. The main

reason is that, usually by the time Alzheimer’s is diagnosed, 60% of brain matter is

gone and the process is irreversible.

Most of the existing clinical trials fail to help identify a cure to the disease and a

lot of pharmaceutical companies have invested and an estimated 150 to 300 experi-

mental Alzheimer’s treatments have failed to show clinical benefits.

As an open challenge in healthcare, diagnosing and forecasting the Alzheimer’s

Disease have been studied a lot by healthcare professionals and data scientists. Cur-

rent popular forecasting models tend to use hand-crafted volumetric features from

brain magnetic resonance imaging (MRI) as input, which may not be as informative

as features extracted directly from the scans themselves.

We propose a novel forecasting framework which takes patient MRI scans as input

and utilizes a deep 3D Convolutional Neural Network (CNN) to extract features from

a patient’s brain MRIs over multiple visits. We then fuse these features extracted

from the neural network with the cognitive test scores of a patient and demographic

data. These features are then fed into a Recurrent Neural Network, which can

provide an insight into the patient’s disease progression over time. We show that

the inclusion of these customised/patient-specific features increases the F1-score,

sensitivity, and specificity of forecasting the disease stage of cognitively normal (CN)

and Mild Cognitive Impairment (MCI) patients over a horizon of 2 years. The results

of our findings are validated on the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) dataset. Along with ADNI we have the The Alzheimer’s Disease Prediction

4



Of Longitudinal Evolution (TADPOLE), which provides a collection of structured

information such as brain volumetric data and cognitive test scores.

To further utilize the abundant information we have from the ADNI and the

TADPOLE data sets, we introduce a novel technique called ShortFuse (we will discuss

in more detail in the next section). In simple terms, ShortFuse is a method to fuse

information from structured data (such as tabular data of age, height, gender, mass,

etc in biomedical applications) into unstructured data (images or time-series data

that tend to need deep learning models to extract features from). We propose that

ShortFuse is going to help with our study of Alzheimer’s Disease forecasting, because

we are able to access a rich set of data ranging from cognitive scores, demographic

information to the actual volumetric 3-dimensional MRI brain scan images. We

speculate that by incorporating ShortFuse on our CNN image feature extractor, we

will be able to achieve higher performance in our final end-to-end trainable forecasting

model that consists of a CNN image feature extractor and an RNN-based forecasting

pipeline.

2 Background and Related Work

2.1 ShortFuse: Fusing Structured Covariates with Unstruc-

tured Information

Fiterau at el.introduced a new method, called ShortFuse, that incorporates struc-

tured covariates into time series deep learning models, which was shown to im-

prove performance over current state-of-the-art models on the task of forecasting

osteoarthritis progression [5].It is common in biomedical applications that when we

are analyzing patient records or medical data, we are likely to obtain structured in-

formation such as age, gender, height,weight, etc. It has become popular nowadays

for machine learning researchers and data scientists to apply deep learning methods

to extract features from unorganized or unstructured data such as medical images

or time-series data such as electroencephalography (EEG) signals. In addition to

the exceptional computational capabilities these deep learning models have and the

5



successes they have already brought to the community, Fiterau at el. propose that

all information may be found useful for prediction or classification tasks, and it is

speculated that if the structured covariates also get incorporated into the machine

learning models via certain information-fusion techniques, the performance may be

higher.This method is called ShortFuse. The practice of information fusion is theoret-

ically demonstrated, and this technique is versatile. ShortFuse makes no assumptions

regarding the structure, dimensionality, or sampling frequency of the time series. It

can be applied to either RNN or CNN model architectures as demonstrated in the

article. It is also evident through experimenting that ShortFuse matches or improves

on results obtained through feature engineering performed by domain experts, and

achieves state-of-the-art accuracy with no manual feature engineering. Concretely,

ShortFuse works on the premise that the earlier we integrate the structured covariates

into the deep learning model, the more effective it should be in order to produce bet-

ter feature construction. Hence for convolutional neural networks, ShortFuse should

be applied predominantly although not exclusively on the initial convolutional layers.

In the article this practice is called Hybrid Convolutions. The CNN example shown

in the paper uses dropout, and then it is applied to the sequences in a time window

with the structured covariates (age, gender, height, and mass) as parameters. The

authors presents that there can be several convolutional filters in the architecture,

the output of which are pooled,followed by an additional layer of convolutions which

can then use the covariates again.The paper also discussed ShortFuse working with

LSTM and their specific gates in further details.

2.2 Related Work on CelebA Facial Attribute Classification

Anderson et al. published a survey that summarized the performance on facial at-

tributes classification across popular CNN architectures such including VGG, ResNet

and Inception [6]. They used the CelebA dataset but their training/testing parti-

tion seems to be different. They reported that using VGG, the test accuracy stays

around 0.791-0.792 depending on the types of cropping preprocessing. Their experi-

ments have shown that InceptionV3 network outperforms VGG in terms of accuracy

6



and f1 score.

There is also another innovative method specifically on the facial attractiveness

classification problem, the co-attention mechanism proposed by Shi et al. [7] They

suggest that accurate representation for facial composition is essential for the esti-

mation, and they addressed the issue by using pixel-wise labelling masks as the meta

information of facial composition, and employing a co-attention learning mechanism

to concurrently evaluate the significance of different local regions and facial compo-

nents. With their approach, the network was able to achieve very high accuracy at

around 0.85 on CelebA, although their main focus is not on this dataset.

Figure 1: the best published methods on facial attributes classification task with

CelebA dataset.

7



3 Methodology

3.1 Core Algorithm

Algorithm 1: Learning hybrid convolutional filters

Inputs:

X ← input n× n image

s← d-dim structured covariate vector

s` ← the `th element of the d-dim structured covariate vector

xi,j ← p× p patch from the input image centered at i, j

κ← p× p convolutional filter

for every image patch xi,j do

κ` ← w0 + ws` ;

2D convolution: zi,j = 1T (xi,j � κ`)1 + β;

end

Shortfuse was originally designed for time-series and temporal signals. For our

task, the time series is replaced by grid-like image data. The hybrid convolution

maps an input image x of size n x n to a matrix z of size n x n. Each element zi,j of

z is computed from a image patch from x. Then we have

zi,j = 1T (x̄i,j � κ)1 + β

where x̄ is the image patch centered at pixel (i, j) of dimension n’ x n’, κ is the

convolutional kernel of the same dimension as the patch, � denotes the Hadamard

product and 1 is a matrix of 1’s and β is the bias term.

Essentially every element of z comes from a 2D convolution operation, which is

done by taking the sum of an element-wise product between the image patch and the

kernel. We first obtain several structured covariates such as age, gender, cognitive

test scores, etc. Then we incorporate each of them with one convolutional filter. We

want every convolutional filters related to each one of them, and then we may have an

additional free filter without fusion that just learns like a normal 2d convolutional

8



kernel. And the temporal concept is demonstrated through the movement of the

convolutional kernels across the image.

3.2 Hybrid Convolution

κl = w0 + w1sl

input of the procedure: image s and structure covariate vector s. Suppose that

the images are scaled to squares of n x n dimensions for convenience and the covariate

vector s has a dimension of d. In substitute of the time axis in a time series, we will

just have the size of the image for our task. The weights w1 and the bias term w0

are both learnable parameters, and sl represents the l-th structured covariate used

for the corresponding convolutional filter.

so we’ll have as many filters as we have structured covariates. As for now we will

discuss under the assumption that we’re only getting two structured covariate. As

we will see in the next section, we will first work with two structured covariate (male

and female).

3.3 Experimental Designs

The experiments that we needed to perform involve hyperparameter tuning, changing

the internal network architecture, and all of them require extensive GPU compute

resources and may need to be executed remotely on our cluster.

3.4 Baseline experiments

First order of business is to get a reasonable performance on facial attribute Esti-

mation using a regular convolutional neural network. According to the literature

we have reviewed in Section 3, attractiveness label is one of the hardest features to

predict, and we think that it is a more fitting label to perform our task.

The initial idea is to perform simple transfer learning on a popular CNN ar-

chitecture. Our first attempt was with a residual network. We used a resnet-18

model pretrained on ImageNet and froze the layers except for the last one. This

9



model is a 18-layer deep residual network. We then replaced pretrained resnet with

a pretrained VGG-16 model. From the ImageNet benchmark, the 16-layer VGG net

does not perform any less well than ResNet, while having a more straightforward

architecture.

After the two initial attempts on transfer learning, my advisor suggested that

we should train the network from scratch instead. We had another naive attempt

by getting a vanilla VGG network that is not pretrained at all and tried to train

from scratch on CelebA. For the first time we realized that training a 16-layer deep

network became too much for my local machine due to the high GPU memory usage

and could not be performed locally. So most of the experiments from that point on

was done on the Gypsum cluster. This attempt ended up being too naive and the

accuracy was barely over 50%.

We concluded that the baseline model needs to have pretrained weights but we’d

still train it from scratch on the CelebA images instead of just fine-tuning it. We

finally took a pre-trained VGG-16 with Batch Normalization but re-trained it on

CelebA - aka no parameter was frozen at the beginning and every layer was retrained.

3.5 Hybrid layers

The next step of this project is to introduce the hybrid convolutional layers. One of

the core feature of our project is the implementation of a customized convolutional

layer in our deep learning model. Unlike the vanilla convolutional layers, this hybrid

convolutional layer takes a structured covariate as parameter, and this covariate will

activate the learning of certain weights when its value is non-zero.

Pytorch layers are implemented as classes that extend nn.Module, and so we

defined two weight matrices and introduce the covariate as a single scalar whose

value depends on the sample that goes through. The only other thing we had to do

is defining the forward pass. For instance, if the current training image has a label

“male”, then the covariate parameter of the hybrid layer will be 1 for that sample

This layer will be adapted to 3D tasks (brain MRIs) if needed. For the purpose

of our tasks on 2D images of celebrity faces, all the operators such as convolution,

10



batch normalization, and max pooling are done in 2D.

3.6 Batch inputs and learning rates

Once the hybrid layer was build, a few experiments were performed and recorded

(see section 4 for details). The preliminary results weren’t very satisfactory because

the initial implementation of the layer could only take single input and therefore

prohibits the use of batch normalization and minibatch gradient descent. Several

modifications were made to enable the hybrid network to take batch inputs, and

we performed subsequent experiments to test which batch sizes and corresponding

learning rates would be best for our classifier.

3.7 Early-Fuse vs Later-Fuse

From the original ShortFuse paper we have seen that it is arguably better to place

the hybrid convolutional layers as early as possible, because then the structured

information would have a longer influence on the learning.

However, a counter idea is that at the first convolution, the network is gener-

ally still learning very low level features such as edges or blobs, and the structured

information may not seem as significant to the learning yet. So one of the other

experiments we designed is to move the hybrid layer to the third and the further, the

last convolution, to see if the network will start picking up these higher level features

along with the given structured covariates.

3.8 More Covariates

In our previous experiments, gender was the only covariate attribute we used to

help with the attribute estimation. The question we then pose is how will another

covariate affect the performance. Further, how can we build a hybrid model that

is capable of taking an arbitrary number of covariates and flexibly process images

along with all of them? This gives us a new direction to extend our model.

11



3.9 Facilities and Hardware

To accommodate the need for compute resources, most of the computational experi-

ments were done on Gypsum, a multi-GPU compute cluster located at Massachusetts

Green High-Performance Computing Cluster (MGHPCC). Specifically, we utilize the

cluster by securely connecting to the server from my local computer, then access the

remote graphic processing units (GPU) there to perform the experiments.

In facilitating my own experiments with the 16-layer VGG network and the hybrid

version of it, all of the recorded experiments were ran on Nvidia’s TitanX-long GPU

with 4096MB reserved memory. We ran all of my experiments on a single compute

node, i.e. no parallel computing. Most of the experiments involve the network

processing the entire training set once and they usually finish between one and two

hours.

4 Experiments and Results

4.1 Baseline and Preliminary Experiments Without Hybrid

Layer

VGG16 Network pretrained on ImageNet gave the best performance - validation

accuracy about 78-79% on attrativeness attribute estimation. We used mini batches

of size 8 for the task.

4.2 Hybrid Layers with no Batch Inputs

Before adapting the hybrid convolutional layer to the VGG Net, we first built a

simple two-layer hybrid CNN. It took some tricks to make this network work. First

we defined different forward passes with different covariate values (1 for male and

0 for female). Then at each iteration only one image can pass through the network

so batch size can only be 1. We thought it could not take batch inputs because

otherwise we would have multiple images but only one integer for the covariate value

12



for each forward pass. Additionally, we removed all the nn.Sequential containers in

the implementation because we need to customize forward passes.

we went on to replace the first convolutional layer in VGG16 with the new hybrid

layer that takes as input an extra covariate. Since the naive hybrid layer could not

take batch input, we had to remove all the batch normalization layers as well and

proceed with the regular VGG. What we did not realize at that point was that batch

normalization was essential for this task and it plays a much bigger role in ensuring

the stability in the gradient flow than we thought.

Therefore the first experiment on the modified hybrid VGG didn’t perform well

at all. The training took more than 3 hours because of the low batch size, and the

validation accuracy came out to be 0.52. It was only after several other experiments

later we observed that the model encountered gradient problem during training and

that during validation phase it was predicting only 0 or 1’s, and that’s why we kept

seeing the 0.52 and 0.48 validation accuracy.

The following experiments were performed to confirm that batch normalization

was crucial to this task. The modified VGG network was trained with Adam opti-

mizer, learning rate of 1e-3 and we used binary cross entropy loss for the classification

task on the ‘attractiveness’ facial attribute. We evaluate the model using binary ac-

curacy. Later we also used F1-macro score as an additional metric where it is defined

as the mean of class-wise/label-wise F1-scores: macro f1 = 1
N

∑N
i=0 f1 scorei . But

since the class labels are fairly evenly distributed, we find the two metrics to have

very marginal differences in our evaluation.

experiment model batchsize val accuracy observation

exp1 vgg16 bn 16 0.783 normal loss curve

exp2 vgg16 16 0.52 oscillating training loss

exp3 vgg16 1 0.52 unstable training

exp4 vgg16 bn 1 0.48 gradient vanished

exp5 vgg16 bn 16 0.791 normal loss curve

Table 1: results of the baseline experiments exploring the effect of batch normal-

ization

13



It can be observed that regardless of batchsize, regular VGG16 network ended

up having gradient problem and the training would fail, so did the VGG16-BN net-

work (which applies batch normalization to every convolutional block), but without

minibatch inputs.

4.3 Hybrid Layers with Batch Inputs

4.3.1 Implementation Details of the Hybrid CNN with Batch Normal-

ization

Since we recognize the importance of providing a detailed explanation of the novel

model, and a transparent pathway to re-implement this for the readers, we have

decided to include this section to breakdown the implementation details of this new

modified VGG network with hybrid convolution.

So we ended up making it that the hybrid layers could take batch inputs; here is

the stack of logic:

In forward pass of the main script, we create an instance of the hybrid VGG16,

and during training a minibatch of images and their corresponding covariates (to-

gether as a 1d tensor) are passed in simultaneously.

The hybrid model first makes a function call to instantiate a vgg16 bn imported

from the Pytorch library, then loads the pretrained weights. Next, it replaces the

first Conv2d layer with a hybrid convolutional layer. In the forward pass of this

hybrid model, input images and the covariate vector enter the hybrid layer together.

The actual hyrbid Conv2d layer extends the Pytorch nn.Module class and modifies

the regular 2d convolution operator. Here’s how this layer works:

Convolution kernels gets updated per minibatch. Each convolution filter consists

of two weight tensors, W0 and W1, with Kaiming initialization [reference], plus the

covariate input. The value of the weight tensor is ultimately evaluated to either W0

or W0 +W1 depending on whether the covariate is 0 or 1 for a particular image.

As discussed, the input covariate vector is an array of covariates (with ‘male’

being encoded to 1 and ‘female’ being 0). The ith covariate is therefore just a scalar.

14



In the forward pass, we have a for loop that iterates over each data point in the

minibatch. For each data point, kernel is computed as ki = W0 +W1 · Si where it is

a scalar multiplication.

Then we expand the first dimension of the image to make it has shape (1, 3, 224,

224)

Then a standard 2D convolution is done with the kernel k i and a single image

x[i]. Then after processing each data point in the minibatch, all the outputs of the

Conv2d are concatenated into one. This output is the final output of the hybrid

layer and then it becomes the input of the BatchNorm2d layer.

4.3.2 Experiments and Results

Hybrid VGG models with batch inputs gave results that are on par with our baseline.

The first time we ran the hybrid vgg with batchsize=8 it only gave me a 0.7

validation accuracy / f1 micro score. Then to obtain some stable results, we designed

the following experiments:

we assign the covariates to be all zeros, all ones, and the normal values from the

dataset. And for each of the three types of covariate assignments we crossed them

with batchsize = 16, 32, and 64. We ended up running 9 different experiments

with 9 sets of configurations, and the results are more promising, all similarly ranging

from 0.78 to 0.80.

we also noticed some very nice looking loss plots which has never occurred before.

That is, there was actually a visible downward loss curve instead of loss values just

oscillating throughout the training.

15



Figure 2: Loss curve observed with single-covariate Hybrid VGG-16 and batchsize

of 32. With batch inputs, the output displays a consist decreasing loss curve.

4.4 Tuning Batch Size and Learning Rates

From the previous experiments we noticed that different batch sizes in the training

phase might give varying performance; e.g. the smaller batch size of 8 took longer

to train and performed considerably lower than larger batch sizes such as 16, 32 and

64. Moreover, we notice that larger mini-batches may tolerate higher learning rate

without having gradient problems and thus speed up training.

we soon noticed that when batch size exceeds the TitanX GPU on Gypsum

would encounter memory error. And smaller batch sizes were already shown to have

weaker performances and running time. So we conducted the following experiments

with batchsize of 32 and 64 - and with each we tried learning rate of 1e-3, 1e-4, and

1e-5.

The results are summarized in the table at section 5.7.

16



4.5 Multiple Covariates

A few more adjustments had to be made in order for our hybrid model to take

multiple covariates at the same time. Now our structured covariates become a matrix

Cov of shape (batchsize, num covariates), where every row of this matrix is an array

of covariates. Picking ‘smiling’, ‘high cheekbone’ and ‘young’ as our attributes, we

have to internally loop over the 3 covariates to compute the kernel.

The l-th kernel is computed from the scalar product between each initialized

weight matrix and the scalar covariate value Sli (0 or 1)

Kl = W0 +W1 · Sl1 +W2 · Sl2 +W3 · Sl3...

Figure 3: Loss curve for Hybrid VGG16 and three covariates.

4.6 Relocating the Hybrid Layers

Following the discussed in section 3, we performed the respective experiments re-

garding moving the hybrid layers to the later part of the VGG network. In a more

detailed description, we inspected the source code of the VGG network, and noticed

that all of the feature extracting layers (13 blocks of convolutional layers followed by

non-linearity activation and batch normalization) are contained together. Therefore

17



it is relatively easy to take out any of the convolutional layers and replace it with

our hybrid layer.

we attempted to replace the second, third and the last (13th) convolutional layer

with hybrid Conv2d, but for some reason the model experienced an unknown error

when the hybrid layer was placed at the second block. We ended up obtaining error-

free outputs from the other two experiments and the results are presented below.

Figure 4: Loss curve for hybrid layer replacing the 3rd and the last convolutional

layer. Despite the oscillation observed in the plot, the network with late fusion

18



outperforms the others.

4.7 Results and Evaluation

Here we summarize the results across all the significant experiments that we con-

ducted into a table and we will discuss how the model performances changed over

different settings.

As we see from the summary, the baseline model performs under 0.80 accuracy

when the batch size is smaller than 32. With one structured covariate (we choosed

gender at the time), the accuracy was able to reach 0.80-0.81 with a tuned learning

rate. We chose to run the rest of the experiments with the tuned batchsize and

learning rate. We only moved the position of the hybrid layer when we had three

covariates, and the resulting accuracy was consistently above 0.81.

The best performing configuration was replacing the last convolutional layer in

VGG-16 with our hybrid layer, running on batchsize=32 and learning rate of 1e-5,

having three covariates (smiling, young, and high cheekbone) and using the Adam

optimizer and binary cross entropy loss. We trained on the entire training set which

had over 5000 iterations and the evaluated on the entire validation set. F1 macro

score and binary accuracy were very close, both around 0.821.

19



model batch size learning rate experiment type Accuracy

Baseline 8 1e-03 baseline 0.79217

Baseline 16 1e-03 baseline 0.79604

Baseline 32 1e-03 baseline 0.80661

Baseline 64 1e-03 baseline 0.80505

Hybrid one cov 16 1e-03 varying batch size 0.78285

Hybrid one cov 32 1e-03 varying batch size 0.78804

Hybrid one cov 64 1e-03 varying batch size 0.79946

Hybrid one cov 32 1e-04 varying lr 0.81199

Hybrid one cov 32 1e-05 varying lr 0.81345

Hybrid one cov 64 1e-04 varying lr 0.81018

Hybrid one cov 64 1e-05 varying lr 0.80414

Hybrid one cov 64 1e-06 varying lr 0.76458

Hybrid three cov 32 1e-05 multiple covariates 0.81281

Hyrbid 1st conv 32 1e-05 varying layer position 0.81269

Hyrbrid 3rd conv 32 1e-05 varying layer position 0.81053

Hybrid last conv 32 1e-05 varying layer position 0.82136

Table 2: experiment results with different configurations

5 Conclusion

In this paper we presented how incorporating structured covariates can bring per-

formance boost for deep learning models in classifying visual data. We tested our

hypothesis on the CelebA dataset which contains more than 100,000 human faces

and a rich array of facial attribute annotations. By incorporating multiple other

facial attributes into the convolutional layers of our network, we were able to get

better classification results on certain target attributes. We first established a base-

line model using VGG-16 network and performed binary classification on CelebA,

trained on 162,770 instances and validated our results on a separate validation set of

19,867 images. We evaluated our model using macro F1 score and binary accuracy,

20



and the initial baseline performance metric is consistently at 0.78-0.79. In detailed

documentation, we then developed a hybrid convolutional layer and substituted the

Conv2d layer in VGG with it. At the earlier stage we only allowed one structured

covariate to pass through the network along with its corresponding image at each

iteration, but later we enabled the hybrid network to take an array of multiple covari-

ates along with each image. We then conducted experiments to find the best fitting

hyperparameters such as the size of mini-batches and the learning rate. For each

of the experiments we plotted the loss curves and saved the best-performing model

checkpoint, in addition to recording the evaluation metrics. We also explored the

effects of replacing the later convolutional layers with the hybrid layer, in attempt

to fuse the structured information with higher-level image features. We found that

although overall did not have a very significant difference, placing the hybrid layers

at the end of the deep network occasionally had stronger performance than their

counterparts in the early layers.

5.1 Discussions and Future Work

This thesis project mainly investigated the creation of hybrid convolution with struc-

tured covariate and a practical implementation of Shortfused hybrid convolutional

neural network. We used a VGG network for our experiments, but from the litera-

ture we have reviewed in previous sections, we observe that other architectures such

as Inception Net is known to have better performance for the CelebA facial attribute

classification task. However, since the convolutional operation in different network

architectures remain very similar to each other, we believe that it’d be relatively easy

to apply our hybrid mechanism to other networks as well. Besides, keep in mind that

our real focus of this shortfuse technique is not merely to improve performance on

facial attribute estimation, but rather on feature extraction for neuroimaging data

such as brain MRIs, so as long as we know that the structured covariates do improve

our Convolutional Networks, we have reasons to believe that this approach will have

positive benefits for our future work.

Even though that the proposal of the original shortfuse and hybrid convolution

21



with structured covariates was intended for medical data, we ended up staying with

the CelebA facial attribute dataset and performing our experiments on it. What is

worth noting is is that this idea of bringing structured information into convolutional

neural networks originated from our interest in brain scans and more specifically

Alzheimer’s detection/automatic diagnosis. Despite the 3-dimensional, volumetric

nature of MRI data, we believe that it will not take too much effort to corporate

my hybrid layers into the 3D convolutional network we obtain in the lab that is

specialized in processing MRI images.

References

[1] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv:

1512.03385 [cs.CV].

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classifi-

cation with Deep Convolutional Neural Networks”. In: Proceedings of the 25th

International Conference on Neural Information Processing Systems - Volume

1. NIPS’12. Lake Tahoe, Nevada: Curran Associates Inc., 2012, pp. 1097–1105.

[3] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for

Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].

[4] Ziwei Liu et al. “Deep Learning Face Attributes in the Wild”. In: Proceedings

of International Conference on Computer Vision (ICCV). Dec. 2015.

[5] Madalina Fiterau et al. “Shortfuse: Biomedical time series representations in

the presence of structured information”. In: Proceedings of machine learning

research 68 (2017), p. 59.

[6] Ricky Anderson et al. “Facial Attractiveness Classification using Deep Learn-

ing”. In: Sept. 2018, pp. 34–38. doi: 10.1109/INAPR.2018.8627004.

[7] Shengjie Shi et al. “Improving facial attractiveness prediction via co-attention

learning”. In: 2019 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP’19). IEEE. 2019, pp. 4045–4049.

22

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/INAPR.2018.8627004

	Introduction
	VGG
	CelebA dataset
	Significance and Relevance to Neuroimaging and Alzheimer's Detection

	Background and Related Work
	ShortFuse: Fusing Structured Covariates with Unstructured Information
	Related Work on CelebA Facial Attribute Classification

	Methodology
	Core Algorithm
	Hybrid Convolution
	Experimental Designs
	Baseline experiments
	Hybrid layers
	Batch inputs and learning rates
	Early-Fuse vs Later-Fuse
	More Covariates
	Facilities and Hardware

	Experiments and Results
	Baseline and Preliminary Experiments Without Hybrid Layer
	Hybrid Layers with no Batch Inputs
	Hybrid Layers with Batch Inputs
	Implementation Details of the Hybrid CNN with Batch Normalization
	Experiments and Results

	Tuning Batch Size and Learning Rates
	Multiple Covariates
	Relocating the Hybrid Layers
	Results and Evaluation

	Conclusion
	Discussions and Future Work


